Питание усилителей нч. Питание усилителя


Проект получил такое название в связи с тем, что многие радиолюбители, да и не только, любят слушать музыку на качественной аппаратуре. Для домашнего использования в этом особой проблемы нет, так как есть сеть 220 В и мы можем спокойно получить практически любое выходное напряжение с блока питания, и уже как следствие - запитать практически любой усилитель.

Другое дело обстоит с автомобилем, либо мобильным вариантом. К примеру, автономная работа от аккумулятора на репетиции или выступлении на открытом воздухе, где нет возможности подключиться к сети, инвертор с *кривой синусоидой* вносит искажения, а генератора попросту нет. Выход из ситуации - автомобильный усилитель, но он стоит довольно дорого, и чем выше качество и именитей производитель - тем выше цена. Прикинул, что к чему и решил совместить домашний высококачественный усилитель и автомобильный. А сделал я это следующим образом. Но обо всём по порядку.

Усилитель

Выбор пал на уже очень хорошо зарекомендовавший себя усилитель , почему не 2-ая версия, да потому, что если делать, то делать по максимуму, а в версии 2.5 были немного улучшены показатели по быстродействию, режиму работы и немного «растянута» вниз АЧХ.

Плату я немного подкорректировал, исходя из имеющихся у меня комплектующих. Вытравил, спаял, протестировал, отложил в сторонку.

Блок питания

Блок питания состоит из двух импульсных трансформаторов работающих на частоте 50 кГц, спросите почему так, ответ простой – это импульсник и я рассчитывал количество витков исходя из равномерного заполнения по слоям. Сердечники (магнитопровод) были взяты от компьютерных блоков питания и перемотаны на требуемое напряжение, я сделал «гибрид» из двух в один. В результате оба преобразователя имеют выход с мостов на общую батарею конденсаторов, то есть конденсаторы используются хоть при питании от сети 220 В, хоть от 12 В, трансформаторы соединены общими проводами на «Мекку» и никакого фона не наблюдается.

Номинальная мощность такого блока питания получилась свыше 350 Вт, конденсаторы на входе схемы импульсника 470 мкФ, ключи IRF840, схема «полумост», в качестве генератора IR2153, в преобразователе с 12 В: ШИМка TL494, ключи IRF3205, схема включения *пуш-пул*. Применил диодные сборки для плюсового плеча, а для минусового использовал диоды КД213, сборки закрепил на радиатор, в ходе испытаний -еле тёплые. На плате расположены держатели предохранителей для каждого плеча питания оконечных усилителей, питание защиты взято до мостов, припаяны одиночные диоды анодом к вторичкам, катоды соединяются и идут на плюс питания защиты. Таким образом защита запитана как при питании от 220 В, так и при питании от 12 В, а стабилизатор напряжения не даёт превысить питание защиты выше 24 В.

Емкость конденсаторов на выходе составляет 6600 мкФ на каждое плечо, что реально избыточно, хватило бы и 2200 мкФ на плечо (со стороны проводников печатной платы каждый шунтирован керамикой на 1,5 мкФ), но делать так делать, хуже от этого не стало точно, да и нагрузка на трансформатор снизиться и диодам будет полегче.

Радиатор для полевых транзисторов взял с очень большим запасом, вот просто он у меня давно пылился в шкафу, в результате после 6 часового «марш броска» на максимальной выходной мощности усилителя – радиатор практически комнатной температуры. Пришлось немного поработать напильником, дрелью, нарезать резьбу для крепления самого радиатора к плате и к транзисторам. После настал час притирки основания на 180-ой наждачной бумаге. В результате получился отличный радиатор, крепление транзисторов сделал так, чтобы выводы имели не большую длину, так как ток проходить будет относительно большой, хотя нагрева там не будет, но пусть лучше будет хорошо, чем станет плохо. Чтобы хорошо и аккуратно впаять транзисторы, следует их сначала закрепить на радиатор, а уже после крепления радиатора к плате – припаивать к дорожкам, так не возникнет внутренних напряжений.

На плате блока питания распаян C-L-C фильтр, предотвращающий прохождение помех от системы зажигания, при питании от 12 В. Распаян фильтр C-L-C для фильтрации сетевого напряжения 220 В. Дроссели в обоих случаях взяты от компьютерных блоков питания, первый это бывший ДГС – лишние обмотки смотаны, второй входной дроссель, его часто не ставят, а стоят перемычки, но ведь делаем для себя, так чего же экономить такую мелочь, если польза от неё есть. Предохранитель на 20 А у меня на проводе, такой вариант меня вполне устроил, мало того, что это достаточно надёжный контакт, так ещё и изоляция хорошая, да и вид не портит.

Питание IR2153 идёт через резистор 15 кОм/8 Вт, при длительной эксплуатации -нагрев в пределах нормы, даже палец смело можно держать (но при включенном блоке питания так поступать не следует, элементы схемы находятся под напряжением сети 220 В). Снаббер так же имеет резисторы с общей мощностью 4 Вт (что было то и ставил, зато практически еле тёплые). На входе блока питания стоит предохранитель 4 А, а так же термистор для «щадящего» включения. Можно обойтись и без него, но в момент включения через диоды моста проходит довольно большой ток, потому что конденсаторы в начале заряда имеют очень низкое сопротивление, которое по мере зарядки стремиться к бесконечности, по этому при пуске – термистор своим сопротивлением спасает от пробоя по току диоды мостика.

Защита

Какой же усилитель без защиты для колонок, какими бы они ни были, а бывает что цена за АС далеко переваливает стоимость усилителя, то экономить на таком узле нет смысла - себе дороже.

За основу взял печатную плату со стабилизацией питания, так же подкорректировал под размеры своих комплектующих, ввёл несколько приятных *плюшек*. Защита у меня с задержкой пол секунды, этого хватает, чтобы переходные процессы уже закончились, и включить усилитель без хлопков в колонках. Питается защита до основного выпрямителя питающего оконечники.

Кнопка включения

Теперь надо всё это включить, а как бы это сделать более интереснее, чем просто тумблером, кнопка с фиксацией - банально, кнопка без фиксации – уже лучше, но а если вообще без кнопки?!

Без кнопки не получиться, но саму кнопку можно спрятать или замаскировать под что-то. Замаскирую я её под индикатор сети, а что, всё равно его надо ставить, так почему бы не совместить сразу и кнопку и индикатор. Взял микрик, светодиод и прикинул схемку будущего выключателя/включателя.

Таймер NE555 отлично нам подходит, но что делать с его питанием, надо делать дежурное питание. Да так, чтобы было оно и от 12 В и от сети. На помощь пришла микросхема стабилизатора LM7805, мало мощный трансформатор, пара конденсаторов и диоды для моста.

Нажимая кнопку один раз – мы включаем питание, а включается оно благодаря исполнительным элементам на электромагнитных реле. Релюшки взял две, одна включает питание преобразователя с 220 В на ±35 В, вторая подключает дистанционное включение (REM) преобразователя 12 В на ±35 В. Почему две, а не одна с двумя парами контактов, а дело в том, что так попросту безопаснее. Но при этом ток проходящий через транзистор увеличивается в двое, маломощный транзистор греется и причём ощутимо, не долго думая установил отечественный КТ817, при этом ножки пришлось «перекрестить», но теперь ничего не греется.

Корпус

Материал для корпуса был взят «суровый Челябинский». А именно – холоднокатаный лист углеродистой стали толщиной 2 мм. Штука тяжёлая, но зато прочная, да и в руках его не носить, поставил и пусть себе стоит.

Прикинул как всё будет внутри располагаться. Нарезал резьбы М3, притёр на наждачке и куске стекла основания радиаторов. Разметил отверстия для крепления плат и перфорацию для лучшего охлаждения. Сначала размечаем точки маркером, затем керним, затем сверлим сверлом диаметром 2 мм, потом на 4 мм и 6 мм, снимаем фаски сверлом 6 мм и 8 мм соответственно. Так как крепёж будет с потайными головками, то делаем потаи.

Работа это прямо скажу не очень приятная, да ещё и после рабочего дня, но человек я ленивый и мне было лень занимать вечер следующего дня этим довольно нудным занятием, по этому сделал верх и низ за один вечер, закрепил сразу два листа металла струбцинами на куске ДСП, а сам ДСП в тисках, в результате получил вот такие дно и крышку с «ажурной» перфорацией.

Шлифуем окрашиваемые части корпуса, обезжириваем растворителем, заклеиваем скотчем основание радиаторов и грунтуем. Красим в три слоя, цвет «чёрный матовый», краска и грунт желательно брать одного производителя, иначе возможны казусы, краска сворачивается и грунт вздувается. Мне пришлось всё очистить и грунтовать заново, а потом красить уже другой краской, рекомендую «босни» хорошо держится и на солнце хорошо себя чувствует.

Сборка и настройка

Приступаем к сборке, первым делом крепим платы оконечных усилителей, затем прикручиваем дно (оно же шасси), проверяем оконечники, выставляем предварительные режимы работы, настраиваем ноль на выходе.

Выставляем ток покоя в районе 45-65 мА, что соответствует показаниям милливольтметра при сопротивлении резисторов в цепи эмиттеров 0,47 Ом (по два параллельно) 22-32 мВ. Подключаем и закрепляем защиту АС и блок питания.

Устанавливаем устройство включения кнопкой без фиксации. Прикручиваем крепление крышки усилителя к задней панели, предварительно все винты заливаем клеем ПВА для предотвращения самораскручивания.

Припаиваем светодиод на стеклотекстолит, это наша кнопка, которая будет оказывать давление на микрик, так как за счёт перекоса светодиода относительно оси, (толщина передней панели 2 мм) наращиваем толщину панели кусочком стеклотекстолита, теперь светодиод двигается без перекосов и не клинит. Прикручиваем переднюю панель, закрепляем микрик, выставляем зазор для свободного хода светодиода, так чтобы светодиод был слегка прижат к передней панели пружиной микрика, но при этом нигде не зажимал и имел ровный ход без перекосов. Провода от светодиода берём с запасом, они должны быть мягкими и не создавать дополнительного нажима на светодиод, желательно взять МГТФ.

Проверяем монтаж, проводим испытания с открытой крышкой, если что то работает не так как надо – будет проще решить проблему. Проверяем работу выключателя без фиксации. Закрываем крышку, прикручиваем винтами с потайными головками.

Заключение

Подключаем кабели и наслаждаемся хорошим звуком, не зависимо от того в доме это, в автомобиле или на природе, усилитель сохраняет работоспособность в диапазоне питания батареи от 9-18 В. При питании от сети, напряжение не должно превышать 260 В. В усилителе использован аналоговый трансформатор для дежурного питания, при желании можно использовать импульсный на напряжение от 5-35 В, всё равно питание NE555 и электромагнитных реле, осуществляется через стабилизатор напряжения LM7805.

С печатными платами в формате [.lay]

Когда речь заходит про усилители звука, мы сразу представляем мощную конструкцию с питанием в десятки вольт и иногда столько же ампер. Но ведь бывают ситуации, когда нужно наоборот понизить питание усилителя до минимально возможного значения, желательно вообще до одной пальчиковой батарейки. Это может быть при использовании такого УНЧ в , мобильном телефоне или другом аналогичном устройстве с низковольтным питанием. Данная и представляет собой бестрансформаторный усилитель низкой частоты, работающий от одного гальванического элемента 1,5В. Часто в таких случаях используют трансформаторный выходной каскад, который позволяет получить бОльшую выходную мощность. Но на дворе 21-й век, поэтому обойдёмся без всяких трансформаторов.

Предлгаемый усилитель рассчитан на работу при питании в пределах 0,9-3В на нагрузку сопротивлением 8 Ом. Конечно мощность получится около 50 мВт, но во многих случаях и этого хватает.


Принципиальная схема усилителя с низковольтным питанием показана на рисунке выше. Для проверки работоспособности собираем УНЧ на макетной плате.


УНЧ состоит из входного каскада на транзисторе BC547 и составного выходного каскада на транзисторах BC557, BC547. Установка тока покоя выходного каскада производится с помощью резистора смещения базовой цепи входного транзистора - 220к. Его уменьшение увеличивает ток покоя, увеличение - уменьшает.


В данном усилителе можно применить любые маломощные кремниевые транзисторы, подходящие по проводимости, в том числе и КТ315-КТ361.

Но для максимального снижения напряжения желательно применить германиевые, с малым напряжениям падения. Например отечественные транзисторы серии МП или аналогичные импортные.



Эксперименты с различным питанием данного усилителя показали, что он сохраняет работоспособность даже при 0,85 вольт! На схеме УНЧ стоит по входу микрофон, так что если нужно подать сигнал с другого источника звука - ставим вместо него регулятор громкости. Для тестирования к УНЧ подключалась динамическая головка на 1 ватт. Стены конечно не тряслись - но слушать музыку было можно:)

Обсудить статью ПИТАНИЕ УСИЛИТЕЛЯ

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10... 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3...12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20...30 кОм и переменный сопротивлением 100... 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 - 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2...4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5...0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50...60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30...50) к 1. Резистор R1 должен быть 0,1...2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2... 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит - напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 - 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 - вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 - 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

The End Millenium это усилитель мощности высокого класса в диапазоне мощностей от 99 до 300 ватт (на нагрузке 8 Ом). Применение высококачественных усилителей класса А/В достигается рядом схемотехнических решений. В первую очередь обращает на себя внимание отсутствие каких-либо цепей обратной связи, т.к. если она и корректирует ошибку сигнала, поступившего на вход, после неё это уже необратимо. Простое схемотехническое решение совместно с высоким качеством компонентов обеспечивает короткий путь прохождения сигнала с входа на выход. Использование высокотехнологичных компонентов можно отметить применением полипропиленовых конденсаторов, многоэмиттерных биполярных транзисторов и миниатюрных резисторов на стеклянной подложке.

Высшие частоты диапазона с лёгкостью воспроизводятся ультрабыстрым усилителем (линейность до > 500 000Гц), а использование четырёхступенчатого туннеля на выходе даёт фирменную быструю передачу низких частот. Общая сцена получается хорошо детализированной и прозрачной.

Принципиальная схема построения усилителя The End Millennium:

На принципиальной схеме видно насколько просто реализована идея усилителя. Отсутствие цепей обратной связи (100% без ОС) , отсутствие конденсаторов и других вносящих в сигнал искажения компонентов в цепях прохождения сигнала. Частотная характеристика линейна от постоянного тока до максимально высокочастотного сигнала - 500 000 Гц. Это, возможно, самый быстрый усилитель, который Вы только слышали! Любая часть музыкального сопровождения от глубочайшего баса до мельчайших переходов передаётся усилителем с лёгкостью.

Плата усилителя также содержит дополнительные функции, такие как защита от постоянного напряжения и защита от короткого замыкания на выходе. Защита отслеживает появление любой перегрузки на выходе и отключает усилитель на несколько секунд. Никаких ограничений по току или сигналу не используется. При обнаружении ошибки устройство автоматически выключается и ожидает нормализации ситуации. Затем оно включится и продолжит воспроизведение. Эта система настолько эффективна, что допускает короткое замыкание на выходе на протяжении нескольких дней!

Благодаря новой топологии усилителя, которая, по сути, в некоторых аспектах рушит общепринятые принципы, стало возможным построить усилитель с хорошо контролируемой звуковой картиной, подвижной сценой с высокой степенью детализации по очень доступной цене. Низкая стоимость достигается в основном тем, что Вы производите сборку сами.

Четырёхступенчатый туннельный выходной каскад позволяет точно передать усиленный от источника сигнал на мембрану звуковой головки. Не только начать движение мембраны, но и остановить его за микросекунду.

100% без ОС = 100% музыкальность

Мягкий, почти камерный звук, в основном, заслуга схемотехники усилителя, не содержащего обычной в таких случаях цепи обратной связи. Такой принцип построения обычно называют 100% без обратной связи и также используют в конструкциях других брендов усилителей высокого класса (как правило очень дорогостоящих).

В обычных усилителях (с цепью обратной связи) типичный подход - применение схем с большими коэффициентами усиления (Кус до 100 000) и большой же степенью искажения сигнала чтобы достичь необходимого усиления по напряжению. Путём сравнения формы выходного сигнала по отношению к входному, возможно корректировать ошибку в передаче и таким образом уменьшить измеренное гармоническое искажение. Однако, такая ошибка не может быть исправлена до того как обнаружена и уже воспроизведена звуковой головкой, которая тоже подключена к искажённому сигналу. Это можно сравнить с попыткой погасить волны в бассейне путём создания таких же волн в противофазе. Не практично, к тому же волны имеют слишком малую частоту, сравнимую с временем, необходимым для достижения корректирующих волн другой стороны бассейна.

Другая проблема возникает, когда Вы пытаетесь линеализировать сигнал, который был усилен нелинейным (искажающим сигнал) элементом. Возникает неизбежная модуляция, ранее называемая интермодуляционными искажениями сигнала. Это досадное недоразумение можно охарактеризовать, как-будто поют одновременно два вокалиста, а Вы слышите третий не гармоничный, раздражающий тон. В лучшем случае от этого можно избавиться за счёт потери частотного диапазона, но это всё же потеря. Другой способ услышать интермодуляционные искажения в обычном усилителе, при увеличении или уменьшении громкости сигнала.

Миллениум же воспроизводит сигнал независимо от уровня громкости и динамического диапазона. Он использует совершенно другой принцип исправления искажений. В схемах без ОС невозможно избавиться от искажений, если они уже возникли, поэтому предпринимаются все меры для предотвращения их возникновения. Ультра линейные полупроводники, высокостабильные резисторы, отсутствие конденсаторов и закольцованные дорожки печатной платы для всех цепей аудио сигнала. Все компоненты, используемые в конструкции, высочайшего класса признанных лидеров рынка производителей, которые можно также обнаружить только в высококачественных усилителях запредельного ценового диапазона.

В результате - не перегруженная сложностью схема и чистый звук без модуляций, но с хорошей детализацией и музыкальной динамикой.

Z-транзистор английского производства - это биполярный вертикальный транзистор, созданный по технологии, обычно применяемой к производству MOSFET-транзисторов. Однако, он имеет значительно меньшее сопротивление перехода (Re или Rs) чем FET или MOSFET и благодаря этому вносит меньшие искажения в сигнал.

Незначительная ёмкость перехода (6 пФ) и очень маленький коэффициент шума - также является преимуществом.

Высоковольтные цепи Миллениума

Изначально Миллениум был задуман как усилитель мощностью 120 Ватт на нагрузке 8 Ом или 240 Ватт на нагрузке 4 Ома при трансформаторном питании 33-0-33 Вольта. Но добавлением дополнительных модулей выходного каскада Вы можете использовать его при более высоких мощностях или более низких сопротивлениях нагрузки (вплоть до 1 Ома). При питании усилителя 40-0-40: один дополнительный модуль обеспечивает 180 Ватт на 8 Ом нагрузки, два модуля 350 Ватт на 4 Ома. При питании 50-0-50 Вольт: три модуля - 250 Ватт на 8 Ом, 500 Ватт на 4 Ома.

Детали дополнительного модуля размещаются на отдельной плате, которая также содержит эмиттерные резисторы и соответствующие блокировочные конденсаторы для обеспечения стабильности каскада.

Увеличение выходной мощности также возможно за счёт уменьшения сопротивления нагрузки при питании 33-0-33 Вольт, более 800 Ватт при нагрузке 1 Ом.

Во избежание потери качества, не рекомендуется применять дополнительные модули на выходе устройств, которые будут предназначены для воспроизведения ВЧ и СЧ диапазона. Параллельный модуль будет неизбежно иметь отличия в характеристиках транзисторов, что приведёт к появлению высших гармоник в сигнале, проявляющихся как агрессивный звук на высоких громкостях сигнала. Решением может быть использование раздельных выходов для НЧ и СЧ/ВЧ каналов. Несмотря на то, что это потребует применения АС с раздельными каналами, большинство современных громкоговорителей имеют эту опцию. В этом случае один выходной канал будет нагружен на СЧ/ВЧ звено, а ряд дополнительных модулей - на более мощный басовый выход, где высшие гармоники будут срезаны входным фильтром АС.

Отдельные выходные разъёмы это стандартное решение для наших наборов 180 Ватт и более.(За исключением версий с балансным входом, где параллельные выходные каскады не используются в любом случае)

Плата дополнительного выходного модуля с эмиттерными резисторами и блокирующими конденсаторами - до трёх плат одновременно. Соединяются с основной платой проводами питания и входных/выходных сигналов.

«The End» - самая удачная аудио конструкция в Скандинавии!

Любой скандинавский радиолюбитель знает предшествующую конструкцию версии 3.1. Более 3600 этих наборов для самостоятельной сборки было продано за период с 1995 по 1999 год, пока не наступил Миллениум. Почти все они в настоящее время работают в сотнях различных аудиосистемах, подтверждая необычайно высокое качество воспроизведения.

В версии "Миллениум" он улучшен во всех аспектах:

Четырёхкаскадная выходная тоннельная накачка басов

Резисторы на стеклянной подложке для лучшей линейности и однородности

Усиление сигнала специально разработанными Z-транзисторами с очень низким Re и выходной ёмкостью (Сс=6 пФ).

Низкое искажение сигнала благодаря ультра линейной топологии ядра.

Детализация высоких частот за счёт применения блокировочных конденсаторов 4,7 мФ с полипропиленовым сепаратором на шинах питания.

Все дорожки печатной платы, относящиеся к аудиосигналу, имеют скруглённые переходы. Это препятствует возникновению стоячих волн и способствует более точному и правильному воспроизведению.

Кроме того, несколько дополнительных функций было добавлено на компактную, изготовленную из высококачественного Fr4 стеклотекстолита плату. Отключаемая функция защиты среагирует на появление постоянного напряжения на выходе 5 мВ, а эффективная защита от короткого замыкания сохранит Ваш усилитель даже при экстремальных перегрузках.

Система смещения при условии соблюдения температурных режимов для напряжений питания +/- 100 Вольт обеспечивает длительную работу при любом применении. Миллениум также стабилен при заниженном питании до +/- 10 Вольт.

Соображения по питанию

Питание усилителя очень критично для качества воспроизведения!

Если Вы задумали построить совершенный источник питания для усилителя, наиболее привлекательным будет использовать батарею (Шведских) конденсаторов RIFA от 100 000 мкФ каждый. Добавьте к ним блокировочные индуктивности, чтобы уменьшить зарядные токи, и Вы получите лучший источник питания для аудио системы.

Однако цена и размер установки при таком подходе делают её менее привлекательной. Это слишком дорого и займёт примерно столько же места, сколько занимает небольшой холодильник. Поэтому мы разработали "Супер-Пупер" Блок Питания более рационального построения, чем громоздкое, но простое решение от RIFA.

120 000 мкФ американских низкоимпедансных конденсаторов от ChemiCon распределены для отдельного питания мощных и чувствительных сигнальных каскадов, таким образом, любые провалы питания, вызванные перегрузкой мощных каскадов, не отразятся на входных и драйверных цепях.

Кроме того, набор поликарбонатных конденсаторов способствует уменьшению высокочастотных шумов от выпрямителя.

Эти два 4,7 мФ конденсатора отмечены на плате, но теперь устанавливаются на плате усилителя, а не БП.

Выход AUX, используется для питания усилителя напряжения и драйверов.

Запас емкостей в 120 000 мкФ обеспечивает полную стабильность и достаточную мощность для питания даже при критических нагрузках. Марка ChemiCon ранее была известна как Sprague.

Полная схема усилителя The End Millenium

Масштаб не 1:1

Размер платы: 107х54мм

Фото платы усилителя

"Hatsink placed here" - Место установки радиатора

"BIAS Testpoint" - Контрольная точка установки смещения

Инструкция по сборке

Сборка Миллениума не отличается сложностью и занимает не много времени.

Начните с того, что высыпите все детали из пакета на стол.

Нагрейте паяльник.

Начните с установки низкопрофильных компонентов, таких как резисторы и триммеры. Проверяйте нумерацию элементов на схеме с написанной на самой плате и сравнивайте с цветовым кодом, напечатанным в таблице на предыдущей странице. Если Вы уверены, что всё установлено правильно, приступайте к пайке. После этого установите конденсаторы, сначала маленькие, затем по больше. Запаяйте.

Два электролита на 470 мФ устанавливаются с обратной стороны, не перепутайте полярность, полоса, обозначающая минус, на обоих обращена к ближнему краю платы.

Установите их на плату, перед тем как обрезать выводы и припаяйте.

Теперь установите Т9 и драйверы, (внимательнее, они устанавливаются каждый со своей стороны) так высоко, как позволяет длина выводов. Они должны стоять под правильным углом по отношению к плате.

После этого прикрутите драйверы на радиатор, используя короткие 3мм винты и маленькие прокладки. Не допускается наличие на них смазки и они должны плотно прилегать к прокладке без воздушного зазора. На картинке видно, что 4м7 конденсаторы также уже установлены, но будет немного проще, если с этим подождать.

Положите термопрокладку на место крепления выходного транзистора и установите картонные шайбы под винты его крепления. Не допускается применение смазки!

Закрепите каждый Sanken на ПРАВИЛЬНОЕ место на плате, металлической подложкой к прокладке. Следите, чтобы под прокладкой не было посторонних включений (стружка, грязь). Используйте прокладку и винты большего размера. Закрутите винты насколько возможно крепче, но так чтобы их не сорвать.

Затем припаяйте их к плате и подрежьте выводы.

Теперь установите конденсаторы 4,7 мФ с обратной стороны платы. Подпаяйте входные и выходные проводники как показано на рисунках.

ВНИМАНИЕ!

Если Вы используете "Супер-Пупер" БП с раздельными трансформаторами для входных каскадов и драйвера (рекомендуется), не забудьте разрезать проводники на печатной плате между + и Aux+, а также - и Aux-

Подключение входных разъемов (небалансный и балансный соответственно)

Соединение дополнительных модулей с основной платой

Настройка

Подключите мультиметр (mV) между двумя контрольными точками на плате, см. стр.10.

Подайте напряжение питания на усилитель, НЕ подключайте пока нагрузку.

Выставьте подстроечным резистором регулировки смещения (501) напряжение 10 mV если Вы будете использовать усилитель с нагрузкой 8 Ом или 20mV при 4 Омах.

Подключите мультиметр к выходным клеммам усилителя. Выставьте подстроечным резистором регулировки постоянной составляющей (103) возможно близко к нулю. Отклонения +/- 50 mV находятся в пределах допуска при использовании любых АС.

Проверьте ещё раз напряжение смещения, возможно, его придётся подкорректировать. Уход параметра +/- 20% от значения находится в пределах допуска.

Повторите процедуры для другого канала. Если напряжения отличаются от указанных, пожалуйста, свяжитесь с LC Audio, прежде чем продолжить.

Подключите Ваши громкоговорители к усилителю и начните воспроизведение! Надо понимать, что для входа в рабочий режим требуется 1-2 недели обкатки усилителя.

Использование защиты от постоянного напряжения на выходе

В Миллениуме имеется встроенная защита от постоянного напряжения на выходе, которую вы можете использовать на своё усмотрение. Вы можете отключить её или вообще исключить из схемы, если желаете. Некоторые рекомендации по этому поводу:

Некоторые эксперты склоняются к тому, что схема защиты влияет на передачу низких частот. И в некоторых случаях они правы. Бас становится более мягким и размытым. Это происходит, потому что защита в некоторых усилителях работает на частотах среза входного фильтра гораздо более высоких, чем это необходимо, скажем 10-20Гц.

Защита Миллениума, благодаря нашим усилиям, не оказывает влияния на басовую секцию, т.к. частота среза фильтра ниже 0,5 Гц и установлен фильтр второго порядка вместо обычного для таких случаев первого. Это означает что характеристика среза фильтра более крутая, и влияние на аудио сигнал практически отсутствует (на 20 Гц влияние фильтра близко к нулю)

Конденсаторы фильтров С12 и С14 изготовлены в пластиковых корпусах и с не магнитными выводами, так что если весь частотный диапазон сигнала пройдёт через них, они выдержат любой, самый притязательный аудио тест. Однако, через них не проходит сигнал выше 0,5 Гц.

Необходимо использовать систему защиты если вы используете электростатические акустические системы, поскольку их сопротивление постоянному току близко к нулю.

Вы можете НЕ использовать систему защиты, если Вы используете обычные динамические системы, поскольку некоторые из них допускают постоянное напряжение на входе до 200mV без ущерба для себя.

*Название темы на форуме должно соответствовать виду: Заголовок статьи [обсуждение статьи]

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2) * Площадь сечения (см 2)
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * (1 + R2/R1)

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности , схемы термоконтроля, вентиляторы, подсветка;
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD : Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать - (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.







2024 © teslales.ru.