Терминал Устройство, состоящее из монитора и клавиатуры, используемое для обмена данными с компьютером. XXXII


Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адanтерами или сетевыми адanтерами. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.

Кроме одноканальных адаптеров используются и многоканальные устройства – мультиплексоры передачи данных или просто мультиплексоры.

Мультиплексор передачи данных – устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки данных – первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из канала связи в ЭВМ выполнить обратное действие – преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специальное устройство – модем.

Модем – устройство, выполняющее модуляцию и демодуляцию информационных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, коммутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства – концентраторы.

Концентратор – устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители.

Повторитель – устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50м, а дистанционные – до 2000 м.

Перечислите и дайте определение характеристик коммуникационной сети (скорость передачи данных, пропускная способность канала связи, и пр.). Почему пропускная способность может быть ниже скорости передачи данных? Для чего используются служебные биты? Что такое достоверность передаваемой информации?

Для оценки качества коммуникационной сети можно использовать следующие характеристики:

§ скорость передачи данных по каналу связи;

§ пропускную способность канала связи;

§ достоверность передачи информации;

§ надежность канала связи и модемов.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени – секунду.

Запомните! Единица измерения скорости передачи данных - бит в секунду.

Примечание. Часто используется единица измерения скорости – бод. Бод – число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300 - 9600 бит/с, а для синхронных – 1200 - 19200 бит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени – секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.

Запомните! Единица измерения пропускной способности канала связи – знак в секунду.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований.

Запомните! Единица измерения достоверности: количество ошибок на знак – ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10 -6 –10 -7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.

Запомните! Единица измерения надежности: среднее время безотказной работы – час.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов.

Что такое цифровая (узкополосная) передача данных? Что такое широкополосная (аналоговая) передача данных? Каковы достоинства и недостатки каждой? Что такое адаптер? Какие есть способы передачи цифровой информации по аналоговому каналу? Перечислите разные виды модуляции и расскажите о каждом из них (с поясняющими рисунками и примерами).

Существует 2 основные технологии передачи данных:

широкополосная передача (аналоговая)

узкополосная передача (для цифровых сигналов)

Широкополосная передача основана на использовании постоянно изменяющихся волн для переноса информации по каналу связи. Их обычно представляют синусоидальной функцией и поэтому называют синусоидальной волной.

Она может быть описана следующими параметрами:

частота - представляет собой последовательность переходов, составляющих один цикл (средняя точка, верхний экстремум, средняя точка, нижний экстремум, средняя точка). Количество таких циклов за одну секунду называется частотой синусоидальной волны. Измеряется в циклах за секунду или в герцах.

амплитуда - представляет собой относительное расстояние между экстремумами волны.

фаза отдельно взятой синусоидальной волны измеряется относительно другой синусоидальной волны (опорной) и выражается как угловой сдвиг между этими двумя волнами. Выражение "две синусоидальные волны сдвинуты по фазе на 180 градусов" означает, что в один и тот же момент одна из волн достигает максимального экстремума, а другая - минимального.

Узкополосная передача:

полярное кодирование. Основано на использовании дискретных состояний канала связи для передачи по нему информации. Эти дискретные состояния обычно представлены как некие импульсы (как правило, напряжения) и носят название прямоугольной волны. Разработано множество схем представления цифровых сигналов или цифрового кодирования. Цифровая единица представлена напряжением +12V, а цифровой ноль - напряжением -12V.

униполярное кодирование.

биполярное кодирование (с возвратом к нулю). Цифровые нули представлены отсутствием напряжения, а цифровые единицы - знакогенерирующимися 3-х вольтовыми импульсами.

Потенциальное кодирование - информативным является уровень сигнала в определенные моменты времени.

Потоковое кодирование - информативным является наличие или отсутствие тока в линии.

В сетях используется потенциальное кодирование.

Если необходимо передать цифровые данные по аналоговой линии передачи, необходим механизм представления цифровых данных в форме синусоидальной волны, чтобы показать присутствие единиц и нулей.

Если выполняется манипулирование амплитудой, то это амплитудная модуляция.

Частотой - частотная модуляция.

Фазой - фазовая модуляция.

Для передачи данных, особенно по телефонным линиям, применяется переменный ток. Непрерывный сигнал на частоте от 1000 до 2000Гц называется синусоидальной несущей частотой.

Амплитуда, частота, фаза несущей могут изменяться (модулироваться) для передачи информации.

При амплитудной модуляции используются 2 разные амплитуды сигнала, соответствующие значениям 0 и 1 (рис. Б. Амплитуда либо нулевая, либо ненулевая).

При частотной модуляции для передачи цифрового сигнала используется несколько различных частот (рис. В).

При простейшей фазовой модуляции применяется сдвиг фазы несущей частоты на 180 градусов через определенные интервалы времени (рис. Г). Два состояния кодируются наличием либо отсутствием фазового сдвига на границе каждого бита.

Устройство, принимающее последовательный поток битов, и преобразующее его в выходной сигнал, модулируемый одним или несколькими из приведенных способов, а также выполняющее обратные преобразования называется модемом. Устанавливается между цифровым компьютером и аналоговой телефонной линией. Все хорошие модемы используют комбинированные методы модуляции сигналов для передачи максимального количества бит.

Сравнение широкополосной и узкополосной передачи сигналов.

Телефонная линия - широкополосная линия связи.

Линия T1 - узкополосной канал.

Соответственно и передаваемая информация может быть и аналоговой и цифровой.

Выделяют 2 типа оборудования:

DTE - терминальное оборудование.

DCE - телекоммуникационное оборудование.

DTE генерирует информацию в форме данных, которые могут быть переданы по каналу связи. Она может быть цифровой и аналоговой.

DCE получает данные от DTE в его формате и преобразовывает их в формат, совместимый с существующим каналом связи.

Схема кодирования:

На рисунке представлена матрица из 4-х элементов. Столбцы определяют природу линий связи, а строки - вид информации, генерируемый устройством DTE.

I квадрант. Информация в аналоговой форме должна быть передана через широкополосной канал (речь, передаваемая по телефонной линии (звуковой сигнал (DTE) -> микрофон (DCE) -> аналоговый сигнал)).

II квадрант. Цифровая информация должна быть передана по аналоговому каналу. Схема преобразования: ПК (DTE) -> модем (DCE) -> аналоговый канал.

III квадрант. Поток аналоговой информации должен быть передан через цифровой канал. Видеоинформация (DTE) -> кодек (DCE) -> цифровая линия T1.

IV квадрант. Цифровая информация должна быть передана по цифровой линии. Выполняется преобразование схемы кодирования сигнала, используемого DTE, в схему, используемую линией связи.

Например, RS-232 (COM порт) использует полярную схему кодирования сигналов, а канал связи использует кодирование BPRZ, отличающееся от предыдущего. DCE, осуществляющий это преобразование называется модулем обслуживания канала и данных (CSU/DSU).

Оборудование DCE играет важную роль в реализации физического уровня. Используя различные типы функций DCE, любая информация (аналоговая или цифровая) может быть приведена в форму, совместимую с любым каналом связи (узкополосным или широкополосным).

Модуля́ция (лат. modulatio - мерность, размерность) - процесс изменения одного или нескольких параметров высокочастотного модулируемого колебания по закону информационного низкочастотного сообщения (сигнала). В результате спектр управляющего сигнала переносится в область высоких частот, ведь для эффективного вещания в пространство необходимо чтобы все приёмо-передающие устройства работали на разных частотах и «не мешали» друг другу. Это процесс «посадки» информационного колебания на априорно известную несущую. Передаваемая информация заложена в управляющем сигнале. Роль переносчика информации выполняет высокочастотное колебание, называемое несущим. В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.

Аналоговая модуляция

Амплитудная модуляция (АМ)

Амплитудная модуляция с одной боковой полосой(SSB - однополосная АМ)

Балансная амплитудная модуляция (БАМ) - АМ с подавлением несущей

Квадратурная модуляция (QАМ)

Угловая модуляция

Частотная модуляция (ЧМ)

Линейная частотная модуляция (ЛЧМ)

Фазовая модуляция (ФМ)

Сигнально-кодовая модуляция (СКМ), в англоязычном варианте Signal Code Modulation (SCM)

Сигма-дельта модуляция (∑Δ)

Цифровая модуляция

Импульсная модуляция

Импульсно-кодовая модуляция (ИКМ или PCM - Pulse Code Modulation)

Широтно-импульсная модуляция (ШИМ)

Амплитудно-импульсная модуляция (АИМ)

Частотно-импульсная модуляция (ЧИМ)

Фазово-импульсная модуляция (ФИМ

Лекция №8

Характеристики информационных каналов

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала Т к , шириной полосы частот, пропускаемых каналом F k , и динамическим диапазоном канала D k характеризующим его способность передавать различные уровни сигнала.

Величинаназывается емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам:

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I ( X ) понимают среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I ( Z , Y ) – среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность С – наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.

Пропускная способность информационного канала определяется двумя параметрами: разрядностью и частотой. Она пропорциональна их произведению.

Разрядностью называют максимальное количество информации, которое может быть одновременно помещено в канал.

Частота показывает, сколько раз информация может быть помещена в канал в течение единицы времени.

Разрядность почтового канала огромна. Так, пересылая по почте, например, лазерный диск, можно поместить одновременно в канал более 600 Мб информации. В то же время частота почтового канала очень низкая – выемка почты из ящиков происходит не чаще пяти раз в сутки.

Телефонный канал информации однобитный: одновременно по телефонному проводу можно послать или единицу (ток, импульс), или ноль. Частота этого канала может достигать десятки и сотни тысяч циклов в секунду. Это свойство телефонной сети позволяет использовать ее для связи между компьютерами.

С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информация будет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Одним из основных вопросов в теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех. Эти вопросы были впервые глубоко исследованы К. Шенноном.

1. Методы повышения помехоустойчивости

В основах всех способов повышения помехоустойчивости информационных систем лежит использование определенных различий между полезным сигналом и помехой. Поэтому для борьбы с помехами необходимы априорные сведения о свойствах помехи и сигнала.

В настоящее время известно большое число способов повышения помехоустойчивости систем. Эти способы удобно разбить на две группы.

I группа – основана на выборе метода передачи сообщений.

II группа – связана с построением помехоустойчивых приемников.

Простым и применяемым способом повышения помехоустойчивости является увеличение отношения сигнал/помеха за счет увеличения мощности передатчика. Но этот метод может оказаться экономически не выгодным, так как связан с существенным ростом сложности и стоимости оборудования. Кроме того, увеличение мощности передачи сопровождается усилением мешающего действия данного канала на другие.

Важным способом повышения помехоустойчивости передачи непрерывных сигналов является рациональный выбор вида модуляции сигналов. Применяя виды модуляции, обеспечивающие значительное расширение полосы частот сигнала, можно добиться существенного повышения помехоустойчивости передачи.

Радикальным способом повышения помехоустойчивости передачи дискретных сигналов является использование специальных помехоустойчивых кодов . При этом имеется два пути повышения помехоустойчивости кодов:

1. Выбор таких способов передачи, которые обеспечивают меньшую вероятность искажения кода;

2. Увеличение корректирующих свойств кодовых комбинаций. Этот путь связан с использованием кодов, позволяющих обнаруживать и устранять искажения в кодовых комбинациях. Такой способ кодирования связан с введением в код дополнительных, избыточных символов, что сопровождается увеличением времени передачи или частоты передачи символов кода.

Повышение помехоустойчивости передачи может быть также достигнуто путем повторной передачи одного и того же сообщения. На приемной стороне сравниваются полученные сообщения и в качестве истинных принимаются те, которые имеют наибольшее число совпадений. Чтобы исключить неопределенность при обработке принятой информации и обеспечить отбор по критерию большинства, сообщение должно повторяться не менее трёх раз. Этот способ повышения помехоустойчивости связан с увеличением времени передачи.

Системы с повторением передачи дискретной информации делятся на системы с групповым суммированием, у которых сравнение производится по кодовым комбинациям, и на системы с посимвольным суммированием, у которых сравнение осуществляется по символам кодовых комбинаций. Посимвольная проверка является более эффективной, чем групповая.

Разновидность систем, у которых повышение помехоустойчивости достигается за счет увеличения времени передачи, являются системы с обратной связью. При наличии искажений в передаваемых сообщениях информация, поступающая по обратному каналу, обеспечивает повторение передачи. Наличие обратного канала приводит к усложнению системы. Однако в отличие от систем с повторением передачи в системах с обратной связью повторение передачи будет иметь место лишь в случае обнаружения искажений в передаваемом сигнале, т.е. избыточность в целом оказывается меньшей.

Помехоустойчивый прием состоит в использовании избыточности, а также априорных сведений о сигналах и помехах для решения оптимальным способом задачи приема: обнаружения сигнала, различия сигналов или восстановления сообщений. В настоящее время для синтеза оптимальных приемников широко используется аппарат теории статистических решений.

Ошибки приемника уменьшаются с увеличением отношения сигнал/помеха на входе приемника. В связи с этим часто производят предварительную обработку принятого сигнала с целью увеличения отношений полезной составляющей к помехе. К таким методам предварительной обработки сигналов относится метод ШОУ (сочетание широкополосного усилителя, ограничителя и узкополосного усилителя), селекция сигналов по длительности, метод компенсации помехи, метод фильтрации, корреляционный метод, метод накопления и др.

2. Современные технические средства обмена данными и каналообразующая аппаратура


Приемником могут быть компьютер, терминал или какое-либо цифровре устройство.


Чтобы обеспечить передачу информации из ЭВМ в коммуникационную

Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.


Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.

Особняком в этом отношении стоят ЛВС, где в качестве передающей среды используются витая пара проводов, коаксиальный кабель и оптоволоконный кабель.

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами . Один адаптер обеспечивать сопряжение с ЭВМ одного канала связи. Кроме одноканальных адаптеров используются и многоканальные устройства – мультиплексоры передачи данных или просто мультиплексоры.

Мультиплексор передачи данных – устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки данных – первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые каналы, и при приеме информации из канала связи в ЭВМ выполнить обратное действие – преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специальное устройство – модем.

Модем – устройство выполняющее модуляцию и демодуляцию информационных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, коммутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройств – концентраторы .

Концентратор – устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители .

Повторитель – устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50 м., а дистанционные – до 2000 м.

Способы передачи цифровой информации

Цифровые данные по проводнику передаются путем смены текущего напряжения: нет на­пряжения - "О", есть напряжение - "1". Существуют два способа передачи информации по физической передающей среде: цифровой и аналоговый.

Примечания: 1. Если все абоненты компьютерной сети ведут передачу данных по каналу на одной частоте, такой канал называется узкополосным (пропускает одну частоту).

2. Если каждый абонент работает на своей собственной частоте по одному ка­налу, то такой канал называется широкополосным (пропускает много частот). Использование широкополосных каналов позволяет экономить на их количест­ве, но усложняет процесс управления обменом данными.

При цифровом или узкополосном способе передачи (рис. 6.10) дан­ные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000 м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычисли­тельные сети. Подавляющее число локальных вычислительных сетей использует узкополос­ную передачу.

Рис. 6.10. Цифровой способ передачи

Аналоговый способ передачи цифровых данных (рис. 6.11) обеспечивает широко­полосную передачу за счет использования в одном канале сигналов различных несущих частот.

При аналоговом способе передачи происходит управление параметрами сигнала несу­щей частоты для передачи по каналу связи цифровых данных.

Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением:

Х=Х max sin (ωt +φ 0),

где Х max - амплитуда колебаний;

ω - частота колебаний;

φ - начальная фаза колебаний.

Передать цифровые данные по аналоговому каналу можно, управляя одним из пара­метров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции ): амплитудный, частотный, фазовый.

Проще всего понять принцип амплитудной модуляции: "0" - отсутствие сигна­ла, т.е. отсутствие колебаний несущей частоты; "1" - наличие сигнала, т.е. наличие колеба­ний несущей частоты. Есть колебания - единица, нет колебаний - нуль (рис. 6.11а).

Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной часто­те. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты (рис. 6.116).

Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1 и от 1 к 0 меняется фаза колебаний, т.е. их направление (рис. 6.11в).

В сетях высокого уровня иерархии - глобальных и региональных используется также и широкополосная передача , которая предусматривает работу для каждого або­нента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие боль­шого количества абонентов при высокой скорости передачи данных.

Широкополосная передача позволяет совмещать в одном канале передачу цифровых данных, изображения и звука, что является необходимым требованием современных систем мультимедиа.

Пример 6.5. Типичным аналоговым каналом является телефонный канал. Когда або­нент снимает трубку, то слышит равномерный звуковой сигнал - это и есть сигнал несущей частоты. Так как он лежит в диапазоне звуковых частот, то его называют то­нальным сигналом. Для передачи по телефонному каналу речи необходимо управлять сигналом несущей частоты - модулировать его. Воспринимаемые микрофоном звуки преобразуются в электрические сигналы, а те, в свою очередь, и модулируют сигнал несущей частоты. При передаче цифровой информации управление произво­дят информационные байты - последовательность единиц и нулей.

Аппаратные средства

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечи­вает сопряжение с ЭВМ одного канала связи.

Рис. 6.11. Способы передачи цифровой информации по аналоговому сигналу:

а – амплитудная модуляция; б – частотная; в - фазовая

Кроме одноканальных адаптеров используются и многоканальные устройства - мультиплексоры передачи данных или просто мультиплексоры .

Мультиплексор передачи данных - устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки дан­ных - первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появле­нии сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необ­ходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка­нала связи в ЭВМ выполнить обратное действие - преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специ­альное устройство - модем.

Модем - устройство, выполняющее модуляцию и демодуляцию информа­ционных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, ком­мутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства - концентраторы .

Концентратор - устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства - по­вторители .

Повторитель - устройство, обеспечивающее сохранение формы и ампли­туды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50м, а дистан­ционные - до 2000 м.

Самостоятельная работа : стр. 646–651, 720–722,
стр. 67–79, 542–544, –651, стр. 48–58; стр. 408–431

Повторитель (репитер) – передаёт электрические сигналы от одного участка кабеля к другому, предварительно усиливая их и восстанавливая их форму. Используется в локальных сетях для увеличения их протяжённости. В терминологии OSI функционирует на физическом уровне.

Коммутаторы – многопортовые повторители, которые считывают адрес назначения каждого входящего пакета и передают его только через тот порт, который соединён с компьютером-получателем. Могут функционировать на разных уровнях OSI. (другая версия – канальный уровень)

Концентратор (hub)– многопортовое устройство для усиления сигналов при передаче данных. Используется для добавления в сеть рабочих станций или для увеличения расстояния между сервером и рабочей станцией (суммарная пропускная способность входных каналов выше пропускной способности выходного канала). Работает как коммутатор, но вдобавок может усиливать сигнал.

Мультиплексор (устройство или программа) – позволяет передавать по одной коммуникационной линии одновременно несколько различных сигналов.

Шлюз – передаёт данные между сетями или прикладными программами, использующими разные протоколы (способы кодировки, физические среды для передачи данных), например, подключения локальной сети к глобальной. Функционирует на прикладном уровне.

Мост – соединяет две сети с одинаковыми протоколами, усиливает сигнал и пропускает только те сигналы, которые адресованы компьютеру, находящемуся по другую сторону моста. Другая редакция : компьютер с двумя сетевыми картами, предназначенный для соединения сетей.

Маршрутизатор – (соединяет разные ЛВС, как и мост, пропускает только ту информацию, которая предназначена для сегмента, с которым он соединён.) Отвечает за выбор маршрута передачи пакетов между узлами. Выбор маршрута осуществляется на основе:
– протокола маршрутизации, содержащего информацию о топологии сети;

– специального алгоритма маршрутизации.

Функционирует на сетевом уровне OSI.

Непонятные вопросы :

Устройство сопряжения ЭВМ с несколькими каналами связи называется:

– концентратор/повторитель/ мультиплексор/модем

Устройство коммутирующее несколько каналов связи называется:

– мультиплексор передачи данных/концентратор/повторитель/модем

XXXIII. Основные понятия криптографии

Самостоятельная работа : стр. 695–699

Криптография (шифрование) – кодирование данных, посылаемых в сеть, так, чтобы их могли прочитать только стороны, участвующие в конкретной операции. Надёжность защиты зависит от алгоритма шифрования и длины ключа в битах.

Метод шифрования – алгоритм, описывающий порядок преобразования исходного сообщения в результирующее. Пример . Метод гаммирования – замена букв нотами по определённому алгоритму.

Ключ шифрования – набор параметров, необходимых для применения метода.Другая редакция: – последовательность символов, сохранённых на жёстком или съёмном диске.

Статический ключ – не меняется при работе с разными сообщениями.

Динамический ключ – для каждого сообщения изменяется.

Типы методов шифрования .

Симметричные : один и тот же ключ используется и для шифровки, и для дешифровки. Неудобен в электронной коммерции, так как у продавца и покупателя должны быть разные права к доступу информации. Продавец посылает всем покупателям одни и те же каталоги, но покупатели возвращают ему конфиденциальную информацию о своих кредитных картах, и нельзя смешивать заказы и их оплату для разных покупателей.

Самостоятельная работа : стр. 646–651, 720–722, стр. 67–79, 542–544, –651, стр. 48–58; стр. 408–431

Повторитель (репитер) передаёт электрические сигналы от одного участка кабеля к другому, предварительно усиливая их и восстанавливая их форму. Используется в локальных сетях для увеличения их протяжённости. В терминологии OSI функционирует на физическом уровне.

Коммутаторы – многопортовые повторители, которые считывают адрес назначения каждого входящего пакета и передают его только через тот порт, который соединён с компьютером-получателем. Могут функционировать на разных уровнях OSI. (другая версия – канальный уровень)

Концентратор (hub)– многопортовое устройство для усиления сигналов при передаче данных. Используется для добавления в сеть рабочих станций или для увеличения расстояния между сервером и рабочей станцией (суммарная пропускная способность входных каналов выше пропускной способности выходного канала). Работает как коммутатор, но вдобавок может усиливать сигнал.

Мультиплексор (устройство или программа) – позволяет передавать по одной коммуникационной линии одновременно несколько различных сигналов.

Шлюз – передаёт данные между сетями или прикладными программами, использующими разные протоколы (способы кодировки, физические среды для передачи данных), например, подключения локальной сети к глобальной. Функционирует на прикладном уровне.

Мост – соединяет две сети с одинаковыми протоколами, усиливает сигнал и пропускает только те сигналы, которые адресованы компьютеру, находящемуся по другую сторону моста. Другая редакция : компьютер с двумя сетевыми картами, предназначенный для соединения сетей.

Маршрутизатор – (соединяет разные ЛВС, как и мост, пропускает только ту информацию, которая предназначена для сегмента, с которым он соединён.) Отвечает за выбор маршрута передачи пакетов между узлами. Выбор маршрута осуществляется на основе: – протокола маршрутизации, содержащего информацию о топологии сети;

– специального алгоритма маршрутизации.

Функционирует на сетевом уровне OSI.

Непонятные вопросы :

Устройство сопряжения ЭВМ с несколькими каналами связи называется:

– концентратор/повторитель/ мультиплексор/модем

Устройство коммутирующее несколько каналов связи называется:

– мультиплексор передачи данных/концентратор/повторитель/модем

  1. Основные понятия криптографии

Самостоятельная работа : стр. 695–699

Криптография (шифрование) – кодирование данных, посылаемых в сеть, так, чтобы их могли прочитать только стороны, участвующие в конкретной операции. Надёжность защиты зависит от алгоритма шифрования и длины ключа в битах.

Метод шифрования – алгоритм, описывающий порядок преобразования исходного сообщения в результирующее. Пример . Метод гаммирования – замена букв нотами по определённому алгоритму.

Ключ шифрования – набор параметров, необходимых для применения метода. Другая редакция: – последовательность символов, сохранённых на жёстком или съёмном диске.

Статический ключ – не меняется при работе с разными сообщениями.

Динамический ключ – для каждого сообщения изменяется.

Типы методов шифрования .

Симметричные : один и тот же ключ используется и для шифровки, и для дешифровки. Неудобен в электронной коммерции, так как у продавца и покупателя должны быть разные права к доступу информации. Продавец посылает всем покупателям одни и те же каталоги, но покупатели возвращают ему конфиденциальную информацию о своих кредитных картах, и нельзя смешивать заказы и их оплату для разных покупателей.

Ассиметричные (несимметричные ): основываются на специальных математических методах, которые создают пару ключей так, что то, что зашифровано одним ключом, может быть дешифровано только другим, и наоборот. Один из ключей называется открытым , его может получить каждый желающий. Второй ключ разработчик ключа оставляет себе, он называется закрытым (секретным) .

Заказы, договоры шифруются открытым ключом, но их может прочитать только владелец закрытого ключа. Если клиент получил файл, к которому не подходит его ключ, значит его послала не его фирма.







2024 © teslales.ru.