Топология домашних сетей. Как выбрать топологию сети Какую лучше выбрать топологию сети и почему


Введение

1. Понятие топологии сети

2. Базовые топологии сети

2.3 Базовая топология сети типа "кольцо" (ring)

3. Другие возможные сетевые топологии

3.1 Топология сети типа "дерево" (tree)

3.2 Комбинированные топологии сети

3.3 "Сеточная" топология сети

4. Многозначность понятия топологии

Заключение

Список используемой литературы

Введение

На сегодняшний день невозможно представить деятельность человека без использования им компьютерных сетей.

Компьютерная сеть - представляет собой систему распределенной обработки информации, состоящую как минимум из двух компьютеров, взаимодействующих между собой с помощью специальных средств связи.

В зависимости от удалённости компьютеров и масштабов, сети условно разделяют на локальные и глобальные.

Локальные сети - сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Локальные сети развёртываются обычно в рамках некоторой организации, поэтому их называют также корпоративными сетями.

Иногда выделяют сети промежуточного класса - городская или региональная сеть, т.е. сеть в пределах города, области и т.п.

Глобальная сеть покрывает большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Глобальные сети практически имеют те же возможности, что и локальные. Но они расширяют область их действия. Польза от применения глобальных сетей ограничена в первую очередь скоростью работы: глобальные сети работают с меньшей скоростью, чем локальные.

Из выше перечисленных компьютерных сетей, обратим свое внимание на локальные сети, для того чтобы лучше понять архитектуру сетей, способы передачи данных. А для этого надо знать такое понятие, как топология сети.

1. Понятие топологии сети

Топология - это физическая конфигурация сети в совокупности с ее логическими характеристиками. Топология - это стандартный термин, который используется при описании основной компоновки сети. Если понять, как используются различные топологии, то можно будет определить, какими возможностями обладают различные типы сетей.

Существует два основных типа топологий:

физическая

логическая

Логическая топология описывает правила взаимодействия сетевых станций при передаче данных.

Физическая топология определяет способ соединения носителей данных.

Термин "топология сети" характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология сети обуславливает ее характеристики.

Выбор той или иной топологии влияет на:

состав необходимого сетевого оборудования

характеристики сетевого оборудования

возможности расширения сети

способ управления сетью

Конфигурация сети может быть или децентрализованной (когда кабель "обегает" каждую станцию в сети), или централизованной (когда каждая станция физически подключается к некоторому центральному устройству, распределяющему фреймы и пакеты между станциями). Примером централизованной конфигурации является звезда с рабочими станциями, располагающимися на концах ее лучей. Децентрализованная конфигурация похожа на цепочку альпинистов, где каждый имеет свое положение в связке, а все вместе соединены одной веревкой. Логические характеристики топологии сети определяют маршрут, проходимый пакетом при передаче по сети.

При выборке топологии нужно учитывать, чтобы она обеспечивала надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи. Это непростая задача! Чтобы ее решить, необходимо знать, какие бывают сетевые топологии.

2. Базовые топологии сети

Существует три базовые топологии, на основе которых строится большинство сетей.

звезда (star)

кольцо (ring)

Если компьютеры подключены вдоль одного кабеля, топология называется "шиной". В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца.

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

2.1 Топология сети типа "шина" (bus)

В этой топологии все компьютеры соединяются друг с другом одним кабелем (рисунок 1).

Рисунок 1 - Схема топологии сети тип "шина"

В сети с топологией "шина" компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов - аппаратных MAC-адресов . Чтобы понять процесс взаимодействия компьютеров по шине, нужно уяснить следующие понятия:

передача сигнала

отражение сигнала

терминатор

1. Передача сигнала

Данные в виде электрических сигналов, передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу. Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

характеристики аппаратного обеспечения компьютеров в сети

частота, с которой компьютеры передают данные

тип работающих сетевых приложений

тип сетевого кабеля

расстояние между компьютерами в сети

Шина - пассивная топология. Это значит, что компьютеры только "слушают" передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

2. Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

3. Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают заглушки (терминаторы, terminators), поглощающие эти сигналы (Рисунок 2). Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.


Рисунок 2 - Установка терминатора

Нарушение целостности сети может произойти, если разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть "падает". Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

У такой топологии сети есть достоинства и недостатки. К достоинствам можно отнести:

небольшое время установки сети

дешевизна (требуется меньше кабеля и сетевых устройств)

простота настройки

выход из строя рабочей станции не отражается на работе сети

Недостатки такой топологии следующие.

такие сети трудно расширять (увеличивать число компьютеров в сети и количество сегментов - отдельных отрезков кабеля, их соединяющих).

поскольку шина используется совместно, в каждый момент времени передачу может вести только один из компьютеров.

"шина" является пассивной топологией - компьютеры только "слушают" кабель и не могут восстанавливать затухающие при передаче по сети сигналы.

надежность сети с топологией "шина" невысока. Когда электрический сигнал достигает конца кабеля, он (если не приняты специальные меры) отражается, нарушая работу всего сегмента сети.

Проблемы, характерные для топологии "шина", привели к тому, что эти сети, столь популярные еще десять лет назад, сейчас уже практически не используются.

Топология сети типа "шина" известна как логическая топология Ethernet 10 Мбит/с.

2.2 Базовая топология сети типа "звезда" (star)

При топологии "звезда" все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub) (рисунок 3).

Сигналы от передающего компьютера поступают через концентратор ко всем остальным.

Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.


В задании нам предлагается разработать сеть на основе сервера, поэтому дадим краткую характеристику таких сетей.

Серверные среды характеризуются наличием в сети серверов, обеспечивающих защиту сети и ее администрирование. Серверы могут выполнять множество ролей.

В Windows NT серверные сети организованы в так называемые домены. Домен - это совокупность сетей и клиентов, совместно использующих информацию системы защиты. Защитой домена и полномочиями на регистрацию управляют специальные серверы - контроллеры домена. В домене имеется один контроллер, называемый основным (PDC, Primary Domain Controller), и вспомогательные резервные контроллеры (BDC, Backup Domain Controller), которые выполняют функции контроллера домена, когда PDC занят или недоступен.

Ни один из компьютеров в сети не сможет обращаться к разделяемым ресурсам сервера, пока не пройдет аутентификацию на контроллере домена.

Преимущества серверных сетей

Серверные сети имеют такие преимущества, как:

    Сильная централизованная защита

    Центральное хранилище файлов, благодаря чему все пользователи могут работать с

одним набором данных, а резервное копирование важной информации значительно упрощается

    Возможность совместного использования серверами доступного аппаратного и программного обеспечения снижает общие затраты

    Способность совместного использования дорогого оборудования, например лазерных принтеров

    Оптимизированные выделенные серверы функционируют в режиме разделения ресурсов быстрее, чем одноранговые узлы

Менее назойливая система защиты - доступ к разделяемым ресурсам всей сети -

обеспечивается по одному паролю

    Освобождение пользователей от задачи управления разделяемыми ресурсами

    Простая управляемость при большом числе пользователей

    Централизованная организация, предотвращающая потерю данных на компьютерах

Недостатки серверных сетей

Серверным сетям присущи и некоторые недостатки, которые в основном относятся к стоимости серверного оборудования:

    Дорогое специализированное аппаратное обеспечение

    Дорогостоящие серверные ОС и клиентские лицензии

    Как правило, требуется специальный администратор сети.

3.2Выбор топологии

Топология сети - это ее физическая схема, отображающая расположение узлов и соединение их кабелем. Каждая топология имеет собственные сильные и слабые стороны. Выделяют четыре основные сетевые топологии:

Звездообразная;

Кольцевая;

Ячеистая (сотовая).

Шинная топология

Шинная топология часто применяется в небольших, простых или временных сетевых инсталляциях.

В типичной сети с шинной топологией кабель содержит одну или более пар проводников, а активные схемы усиления сигнала или передачи его от одного компьютера к другому отсутствуют. Таким образом, шинная топология является пассивной. Когда одна машина посылает сигнал по кабелю, все другие узлы получают эту информацию, но только один из них (адрес которого совпадает с адресом, закодированным в сообщении) принимает ее. Остальные отбрасывают сообщение.

В каждый момент времени отправлять сообщение может только один компьютер, поэтому число подключенных к сети машин значительно влияет на ее быстродействие. Перед передачей данных компьютер должен ожидать освобождения шины. Указанные факторы действуют также в кольцевой и звездообразной сетях.

Еще одним важным фактором является Поскольку шинная топология является пассивной, электрический сигнал от передающего компьютера свободно путешествует по всей длине кабеля. Без оконечной нагрузки сигнал достигает конца кабеля, отражается и идет в обратном направлении. Такое эхоотражение и путешествие сигнала туда и обратно по кабелю называется зацикливанием (ringing). Для предотвращения подобного явления к обоим концам кабельного сегмента подключается Терминаторы поглощают электрический сигнал и предотвращают его отражение. В сетях с шинной топологией кабели нельзя оставлять без оконечной нагрузки.

Преимущества шинной топологии

Она надежно работает в небольших сетях, проста в использовании и понятна.

Шина требует меньше кабеля для соединения компьютеров и потому дешевле, чем другие схемы кабельных соединений.

Шинную топологию легко расширить. Два кабельных сегмента можно состыковать в один длинный кабель с помощью цилиндрического соединителя BNC. Это позволяет подключить к сети дополнительные компьютеры.

Для расширения сети с шинной топологией можно использовать повторитель. Повторитель (repeater) усиливает сигнал и позволяет передавать его на большие расстояния.

Недостатки шинной топологии

Шинная топология обычно имеет следующие недостатки:

Интенсивный сетевой трафик значительно снижает производительность такой

сети. Поскольку любой компьютер может передать данные в произвольный момент времени, и в большинстве сетей они не координируют друг с другом моменты передачи, в сети с шинной топологией с большим числом компьютеров станции часто прерывают друг друга, и немалая часть полосы пропускания (мощность передачи информации) теряется п

онапрасну. При добавлении компьютеров к сети проблема еще более усугубляется;

Каждый цилиндрический соединитель ослабляет электрический сигнал, и большое

их число будет препятствовать корректной передаче информации по шине.

Сеть с шинной топологией трудно диагностировать. Разрыв кабеля или неправильное функционирование одного из компьютеров может привести к тому, что другие узлы не смогут взаимодействовать друг с другом. В результате вся сеть становится неработоспособной.

Звездообразная топология

В топологии типа "звезда" все кабели идут к компьютерам от центрального узла, где они подключаются к концентратору (hub).

Звездообразная топология применяется в сосредоточенных сетях, в которых конечные точки достижимы из центрального узла. Она хорошо подойдет в тех случаях, когда предполагается расширение сети и требуется высокая надежность.

Каждый компьютер в сети с топологией типа "звезда" взаимодействует с центральным концентратором, который передает сообщение всем компьютерам (в звездообразной сети с широковещательной рассылкой} или только компьютеру-адресату (в коммутируемой звездообразной сети).

Активный концентратор регенерирует электрический сигнал и посылает его всем подключенным компьютерам. Такой тип концентратора часто называют многопортовым повторителем (multiport repeater). Для работы активных концентраторов и коммутаторов требуется питание от сети. Пассивные концентраторы, например коммутационная кабельная панель иликоммутационный блок, действуют как точка соединения, не усиливая и не регенерируя сигнал. Электропитания такие устройства не требуют.

Для реализации сети с топологией типа "звезда" можно применять несколько типов кабелей. Гибридный концентратор позволяет использовать в одной звездообразной сети разные типы кабелей.

Расширять звездообразную сеть можно путем подключения вместо одного из компьютеров еще одного концентратора и подсоединения к нему дополнительных машин. Так создается гибридная звездообразная сеть.

Преимущества звездообразной топологии

Такая сеть допускает простую модификацию и добавление компьютеров, не нарушая остальной ее части. Достаточно проложить новый кабель от компьютера к центральному узлу и подключить его к концентратору. Если возможности центрального концентратора будут исчерпаны, следует заменить его устройством с большим числом портов.

Центральный концентратор звездообразной сети удобно использовать для диагностики. Интеллектуальные концентраторы (устройства с микропроцессорами, добавленными для повторения сетевых сигналов) обеспечивают также мониторинг и управление сетью.

Отказ одного компьютера не обязательно приводит к останову всей сети. Концентратор способен выявлять отказы и изолировать такую машину или сетевой кабель, что позволяет остальной сети продолжать работу.

В одной сети допускается применение нескольких типов кабелей (если их позволяет использовать концентратор).

Недостатки звездообразной топологии

При отказе центрального концентратора становится неработоспособной вся сеть.

Многие сети с топологией типа "звезда" требуют применения на центральном узле

устройства для ретрансляции широковещательных сообщений или коммутации сетевого графика.

Все компьютеры должны соединяться с центральной точкой, это увеличивает расход кабеля, и, следовательно, такие сети обходятся дороже, чем сети с иной топологией.

Сети с кольцевой топологией

В кольцевой сети каждый компьютер связан со следующим, а последний - с первым. Кольцевая топология применяется в сетях, требующих резервирования определенной части полосы пропускания для критичных по времени средств (например, для передачи видео и аудио), в высокопроизводительных сетях, а также при большом числе обращающихся к сети клиентов (что требует ее высокой пропускной способности).

В сети с кольцевой топологией каждый компьютер соединяется со следующим компьютером, ретранслирующим ту информацию, которую он получает от первой машины. Благодаря

такой ретрансляции сеть является активной, и в ней не возникают проблемы потери сигнала, как в сетях с шинной топологией. Кроме того, поскольку "конца" в кольцевой сети нет, никаких оконечных нагрузок не нужно.

Некоторые сети с кольцевой топологией используют метод эстафетной, передачи. Специальное короткое сообщение-маркер циркулирует по кольцу, пока компьютер не пожелает передать информацию другому узлу. Он модифицирует маркер, добавляет электронный адрес и данные, а затем отправляет его по кольцу. Каждый из компьютеров последовательно получает данный маркер с добавленной информацией и передает его соседней машине, пока электронный адрес не совпадет с адресом компьютера-получателя, или маркер не вернется к отправителю. Получивший сообщение компьютер возвращает отправителю ответ, подтверждающий, что послание принято. Тогда отправитель создает еще один маркер и отправляет его в сеть, что позволяет другой станции перехватить маркер и начать передачу. Маркер циркулирует по кольцу, пока какая-либо из станций не будет готова к передаче и не захватит его.

Все эти события происходят очень часто: маркер может пройти кольцо с диаметром в 200 м примерно 10000 раз в секунду. В некоторых еще более быстрых сетях циркулирует сразу несколько маркеров. В других сетевых средах применяются два кольца с циркуляцией маркеров в противоположных направлениях. Такая структура способствует восстановлению сети в случае возникновения отказов.

Преимущества сетей с кольцевой топологией

Поскольку всем компьютерам предоставляется равный доступ к маркеру, никто из них не сможет монополизировать сеть.

Недостатки сетей с кольцевой топологией

Отказ одного компьютера в сети может повлиять на работоспособность всей сети.

Кольцевую сеть трудно диагностировать.

Добавление или удаление компьютера вынуждает разрывать сеть.

Сотовая топология

Ячеистая (сотовая) топология характеризуется наличием избыточных связей между устройствами. Например, в истинной сети с сеточной структурой (mesh) существует прямая связь между всеми устройствами сети. Для большого числа устройств такая схема оказывается неприемлемой. Большинство сотовых сетей не являются истинными ячеистыми структурами, а представляют собой гибридные сотовые сети, содержащие некоторые избыточные связи (но не между всеми узлами).

Преимущества и недостатки сотовой сети

Основным достоинством сети с сотовой структурой является ее отказоустойчивость. Другие преимущества включают в себя гарантированную пропускную способность канала связи и то, что такие сети достаточно легко диагностировать.

К недостаткам сотовой топологии относятся сложность инсталляции и реконфигурации, а также стоимость поддержки избыточных каналов.

Шинно-звездообразная топология

Шинно-звездообразноя топология комбинирует сети типа "звезда" и "шина", связывая несколько концентраторов шинными магистралями. Если один из компьютеров отказывает, концентратор может выявить отказавший узел и изолировать неисправную машину. При отказе концентратора соединенные с ним компьютеры не смогут взаимодействовать с сетью, а шина разомкнется на два не связанных друг с другом сегмента.

Звездообразно-кольцевая топология

В звездообразной колъцевой топологии (которую называют также кольцом с соединением типа "звезда") сетевые кабели прокладываются аналогично звездообразной сети, но в центральном концентраторе реализуется кольцо. С внутренним концентратором можно соединить внешние, тем самым расширив петлю внутреннего кольца.

Введение

2.Выбор стандарта и оборудования

4. Расчет стоимости оборудования

5. Расчет PDV

6. Расчет затухания

Введение

В настоящее время практически везде, где есть компьютеры, возникает необходимость соединить их в компьютерную сеть, для облегчения передачи данных и ускорения производственного процесса. Также сети повсеместно используются и в домашних условиях. При организации новой компьютерной сети перед разработчиками стоит вопрос в выборе подходящего стандарта сети, наилучшей конфигурации, оптимального быстродействия, а также дешевизны системы.

В данной работе необходимо разработать небольшую сеть на 17 компьютеров стандарта Fast Ethernet, этот стандарт в данный момент времени наиболее распространён и повсеместно используется. Также мы произведём расчёт стоимости сети.

1. Анализ задания и разработка плана

Для заданного плана расположения узлов сети выбрать оптимальную топологию сети и рассчитать минимальную суммарную длину соединительного кабеля. Топологию выбирать с учетом того, что между строениями планируется использовать только оптоволоконный кабель, внутри строений - коаксиальный кабель или витую пару.

Выбрать стандарт для реализации сети, соответствующее пассивное и активное оборудование и оценить его стоимость.

Величины параметров на плане расположения строений и рабочих станций


Рис.1 План расположения строений и размещения узлов локальной вычислительной сети.


Условные обозначения:

Строение (зона размещения узлов в сети)

Рабочая станция (узел сети)

Сервер (узел сети)

Коммутатор (SW) или маршрутизатор (М)

Выбор стандарта и оборудования

Сеть построена по технологии Fast Ethernet.

Исходя из критерия стоимости, здания объединены между собой по топологии “шина", а в домах применена топология “звезда", которая повышает надежность сети. Таким образом, для реализации сети с вышеприведенными характеристиками возможно использовать стандарты Fast Ethernet 100BaseTX, 100BaseT4 или 100BaseFX.

Официальный стандарт 802.3 установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

100Base - TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type1;

100Base - T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3,4, или 5;

100Base - FX для многомодового оптоволоконного кабеля, используется два волокна.

Оборудование сетей распределяется на активное (повторители, концентраторы и др.) и пассивное (кабели, соединители и др.).

Для соединения рабочих станций в зданиях используется “витая" пара (120 Ом). Для соединения домов оптоволоконный кабель.

Для коммутации узлов могут применяться концентраторы (хабы), коммутаторы, а, в случае необходимости, маршрутизаторы.

В зданиях будет использоваться кабель стандарта 100BaseT4 UTP5 категории.

3. Расчет параметров и определение характеристик сети

Существует четыре основных правила корректной конфигурации Ethernet 802.3 :

1. количество узлов не более 1024

2. максимальная длина кабеля в сегменте определена соответствующей спецификацией

3. время двойного оборота сигнала (Path Delay Value, PDV ) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала

4. сокращение межкадрового интервала IPG (Path Variability Value, PVV) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала

Правила корректного построения сегментов сетей Fast Ethernet включают:

ограничения на максимальные длины сегментов, которые соединяют устройства - источники кадров (соединение DTE - DTE);

ограничения на максимальные длины сегментов, соединяющих устройства-источники кадров (DTE) с портом повторителя;

ограничения на общий максимальный диаметр сети;

ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.

Расчет первого здания:

1 - Свитч = 25 + 3 + 65 = 93м

2 - Маршрутизатор = 50 + 50 =100м

3 - Маршрутизатор = 3 + 3 + 35 = 41м

4 - Маршрутизатор = 15 + 3 = 18м

Свитч - Маршрутизатор = 35 м

В здании мы используем:

Кабель витая пара 100BaseT4 - 287 метра

Свитч - 1 штука

Маршрутизатор - 1 штука

Вилка RJ-45 - 10 штук

Сетевая карта - 4 штуки

Расчет второго здания:

5 - Маршрутизатор = 20м

6 - Свитч1 = 55 + 45 =100м

7 - Свитч3 = 100м

8 - Свитч3 = 100м

17 - Маршрутизатор = 3м

Свитч1 - Маршрутизатор = 75м

Свитч3 - Маршрутизатор = 3 + 3 = 6м

В здании мы используем:

Кабель витая пара 100BaseT4 = 404 метров

Свитч - 2 штуки

Маршрутизатор - 1 штука

Вилка RJ-45 - 14 штук

Сетевая карта - 5 штук

Расчет третьего здания:

9 - Маршрутизатор = 20 + 50 + 3 = 73м

10 - Маршрутизатор = 20 + 3 =23м

11 - Маршрутизатор = 25м

12 - Маршрутизатор = 10 + 50 = 60м

В здании мы используем:

Кабель витая пара 100BaseT4 - 181 метров

Маршрутизатор - 1 штука

Вилка RJ-45 - 8 штук

Сетевая карта - 4 штуки

Расчет четвертого здания:


13 - Маршрутизатор = 60 м

14 - Маршрутизатор = 10 + 3 + 3 +50 =66м

15 - Свитч = 3 + 3 +55 + 25 = 86м

16 - Свитч = 3 + 3 + 25 = 31м

Свитч - Маршрутизатор = 25 + 60 = 85м

В здании мы используем:

Кабель витая пара 100BaseT4 - 328 метра

Свитч - 1 штука

Маршрутизатор - 1 штука

Вилка RJ-45 - 10 штук

Сетевая карта - 4 штуки

Между зданиями используем оптоволоконный кабель категории 100BaseFX.



Расчет длины оптоволоконного кабеля между зданиями:

Учитывая расстояние между домами, расположение точек связи (маршрутизаторов) определим длину оптоволоконного кабеля, руководствуясь выше представленной схемой расположения домов:

S=90 + 140 + 100 + 10 = 340м

Вилка для оптоволоконного кабеля - 6 штук

Общая длина кабеля - 340м


Рис.2. Трехмерный план расположения рабочих станций и хабов

Разделим сеть на подсети (по строениям) c помощью маршрутизаторов. Назначим адреса узлам и маршрутизаторам. Определим маски подсети.

Узел/порт маршрутизатора IP-адрес Маска
1 узел: внешние порты: 192.168.0.130 192.168.0.131 внутренние порты: 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4 IP адрес интерфейса: 192.168.0.5 192.168.0.6 192.168.0.7 192.168.0.8 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224
2 узел: внешние порты: 192.168.0.132 внутренние порты: 192.168.0.34 192.168.0.35 192.168.0.36 IP адрес интерфейса: 192.168.0.37 192.168.0.38 192.168.0.39 192.168.0.40
3 узел: внешние порты: 192.168.0.133 внутренние порты: 192.168.0.66 192.168.0.67 192.168.0.68 IP адрес интерфейса: 192.168.0.69 192.168.0.70 192.168.0.71 192.168.0.72 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224
4 узел: внешние порты: 192.168.0.134 192.168.0.135 внутренние порты: 192.168.0.96 192.168.0.97 192.168.0.98 192.168.0.99 IP адрес интерфейса: 192.168.0.100 192.168.0.101 192.168.0.102 192.168.0.103 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224

300 1200 Сетевые адаптеры SureCom 10/100Mbit 40 680 Маршрутизатор 3Com Router 5009 2700 10800 Кабель 100BaseT4 1,9 2280 Кабель 100BaseFX 7,6 2584 Вилка RJ-45 2,5 105 Вилка для оптоволоконного кабеля 14 84 Итого 17733

5. Расчет PDV

PDV для первого домена коллизий:

1 - Свитч - Маршрутизатор = (35 + 93) * 1.112 = 142,336 бт

Согласно заданию, время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 512 битовых интервала.

PDV для второго домена коллизий:

7 - Свитч3 - Маршрутизатор = (100 + 6) * 1.112 = 117,872 бт

Выбор используемой топологии зависит от условий, задач и возможностей, или же определяется стандартом используемой сети. Основными факторами, влияющими на выбор топологии для построения сети, являются:

среда передачи информации (тип кабеля);

метод доступа к среде;

максимальная протяженность сети;

пропускная способность сети;

метод передачи и др.

Рассмотрим вариант построения сети: на основе технологии Fast Ethernet.

Данный стандарт предусматривает скорость передачи данных 100 Мбит/сек и поддерживает два вида передающей среды - неэкранированная витая пара и волоконно-оптический кабель. Для описания типа передающей среды используются следующие аббревиатуры, табл.

Таблица 3. Стандарт Fast Ethernet

Правила проектирования топологии стандарта 100Base-T.

100Base-TX.

Правило 1: Сетевая топология должна быть физической топологией типа «звезда» без ответвлений или зацикливаний.

Правило 2: Должен использоваться кабель категории 5 или 5е.

Правило 3: Класс используемых повторителей определяет количество концентраторов, которые можно каскадировать.

  • · Класс 1. Можно каскадировать (стэковать) до 5 включительно концентраторов, используя специальный каскадирующий кабель.
  • · Класс 2. Можно каскадировать (стэковать) только 2 концентратора, используя витую пару для соединения средозависимых портов MDI обоих концентраторов.

Правило 4: Длина сегмента ограничена 100 метрами.

Правило 5: Диаметр сети не должен превышать 205 метров.

Правило 6: Метод доступа CSMA/CD.

100Base-FX.

Правило 1: Максимальное расстояние между двумя устройствами - 2 километра при полнодуплексной связи и 412 метров при полудуплексной для коммутируемых соединений.

Правило 2: Расстояние между концентратором и конечным устройством не должно превышать 208 метров.

Существует несколько факторов, которые необходимо учитывать при выборе наиболее подходящей к данной ситуации топологии.

Таблица 4. Преимущества и недостатки топологий.

Топология

Преимущества

Недостатки

Экономный расход кабеля. Сравнительно недорогая и несложная в использовании среда передачи. Простота, надежность. Легко расширяется

При значительных объемах трафика уменьшается пропускная способность сети. Трудно локализовать проблемы. Выход из строя кабеля останавливает работу многих пользователей

Все компьютеры имеют равный доступ. Количество пользователей не оказывает сколько-нибудь значительного влияния на производительность

Выход из строя одного компьютера может вывести из строя всю сеть. Трудно локализовать проблемы. Изменение конфигурации сети требует остановки работы всей сети

Легко модифицировать сеть, добавляя новые компьютеры. Централизованный контроль и управление. Выход из строя одного компьютера не влияет на работоспособность сети

Выход из строя центрального узла выводит из строя всю сеть

Исходя из всего вышеперечисленного, оптимальным видом топологии для проекта является звездная топология стандарта 100Base-TX с методом доступа CSMA/CD, так как она имеет широкое применение в наши дни, её легко модифицировать и у нее имеется высокая отказоустойчивость.

Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину ”, “кольцо ” и “звезду ”.

Топология “шина”

Топология шина (или, как ее еще часто называют общая шина или магистраль ) предполагает использование одного кабеля, к которому подсоединены все рабочие станции. Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.

Достоинства топологии “шина”:

  • простота настройки;
  • относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  • выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии “шина”:

  • неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  • сложность поиска неисправностей;
  • низкая производительность – в каждый момент времени только один компьютер может передавать данные в сеть, с увеличением числа рабочих станций производительность сети падает;
  • плохая масштабируемость – для добавления новых рабочих станций необходимо заменять участки существующей шины.

Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело:Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.

Топология “кольцо”

Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера – он передает их дальше по кольцу, в ином случае они дальше не передаются.

Достоинства кольцевой топологии:

  • простота установки;
  • практически полное отсутствие дополнительного оборудования;
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  • каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  • подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  • сложность конфигурирования и настройки;
  • сложность поиска неисправностей.

Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.

Топология “звезда”

Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем. При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.

Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  • выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  • отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  • легкий поиск и устранение неисправностей и обрывов в сети;
  • высокая производительность;
  • простота настройки и администрирования;
  • в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, “звезда” не лишена недостатков:

  • выход из строя центрального коммутатора обернется неработоспособностью всей сети;
  • дополнительные затраты на сетевое оборудование – устройство, к которому будут подключены все компьютеры сети (коммутатор);
  • число рабочих станций ограничено количеством портов в центральном коммутаторе.

Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.







2024 © teslales.ru.